🌧️ Sin A 4 5 Cos B 5 13
Thefirst shows how we can express sin θ in terms of cos θ; the second shows how we can express cos θ in terms of sin θ. Note: sin 2 θ-- "sine squared theta" -- means (sin θ) 2. Problem 3. A 3-4-5 triangle is right-angled. a) Why? To see the answer, pass your mouse over the colored area. To cover the answer again, click "Refresh" ("Reload").
Sin(A/2)= ±. 1 − C o s A 2. If A/2 is in the first or second quadrants, the result will be positive. If A/2 is in the third or fourth quadrants, the result will be negative. Cos (A/2) = ±1. 1 + C o s A 2. If A/2 is in the first or fourth quadrants, the will be positive.
Sina sin b e. Cos (a-b) c. –Cos a cos b Pembahasan : - = = = = cos a cos b 2. Sin 2 ɵ sama dengan a. d. b. e. c. Pembahasan : Menurut dalil Pythagoras, panjang kaki segitiga disamping adalah Sin ɵ = dan Cos ɵ = Sin 2 ɵ = 2 Sin ɵ Cos ɵ = 2 . = 3. Sin 3p + sin p = a. 4 sin p cos2p d. 2 sin p cos2p q p 2. b. 4 sin2 p cos2p e. 2 sin2
Sin= Cos e = (b) Tan e = Sin = Exercise #2: Consider the unit circle shown below. Answer the following Exercise Determine the value of cos(o) and sin (o) 13 second quadrant. Czs© COS e O Exercise #5: At which of the following angles is tangent undefined? (2) 0=2700 -q l. Using the unit circle diagram, find the exact values for each of the
IfcosA=5/13 and SinB=4/5 then find Sin(A+B) where A,B and A+b are positive acute angles.. Share with your friends. Share 1. We have, cos A = 5 13 since A is an acute angle, then sin A > 0. so, sin A = 1-cos 2 A = 1-25 169 = 144 169 = 12 13 sin B = 4 5 since B is an acute angle, then cos
TheLaw of Sines. The Law of Sines (or Sine Rule) is very useful for solving triangles: a sin A = b sin B = c sin C. It works for any triangle: a, b and c are sides. A, B and C are angles. (Side a faces angle A, side b faces angle B and. side c faces angle C).
Q: If sin a = 17 and cos B =- for a second-quadrant angle a and a third-quadrant angle B, find the 13… A: Given : sinα=817 cosβ=-513 We have to find out the value of sinα+β. We know that…
Diatassudah diperoleh kalau nilai dari sin x = ³/₅, jadi.. sin (180 - x) = sin x sin (180 - x) = ³/₅ Sudut tumpul adalah sudut yang berada di kuadran kedua, nilai dari sinus pada kuadran kedua adalah positif dan negatif untuk cosinus-nya. Diatas diperoleh perhitungan jika sin (180 - x) = ³/₅, yang tandanya positif. Jadi sudah sesuai..
Soal 3. Diketahui sin A = 3/5, cos B = 5/13, A dan B merupakan sudut lancip. Tentukan a. tan (A + B) b. tan (A - B) Jawab a. kita harus mencari nilai sin dan cos lain dengan menggunakan phytagoras dan dimana tan A = (sin A/cos A), seperti dibawah ini. Trigonometri Jadi, nilai dari tan (A + B) adalah 63/16. b.
Ilued. / Fórmulas / Matemática / 1. Relações trigonométricas fundamentais $\mathrm{sen}^{2} a + \cos^{2} a = 1$ $tg a = \frac{sen a}{\cos a}$ $cotg a = \frac{\cos a }{sen a}$ $sec a = \frac{1}{\cos a}$ $cossec a = \frac{1}{sen a}$ 2. Relações trigonométricas derivadas $tg^{2} a + 1 = sec^{2} a$ $cotg^{2} a +1 = cossec^{2} a$ 3. Seno da soma - Cosseno da soma - Tangente da soma $sena+b = sena \ . \cos b + senb \ . \cosa$ $\cos a+b = \cos a \ . \cos b - sena \ . senb$ $tga+b = \frac{tga + tgb}{1-tga \ . tgb}$ 4. Seno da diferença - Cosseno da diferença - Tangente da diferença $sena-b = sena \ . \cos b - senb \ . \cos a$ $\cos a-b = \cos a \ . \cos b + sena \ . senb$ $tga-b = \frac{tga - tgb}{1+tga \ . tgb}$ 5. Soma de senos - Soma de cossenos - Soma de tangentes $sen a + sen b = 2 sen \left \frac{a+b}{2} \right \ . \cos \left \frac{a-b}{2} \right$ $ \cos a+ \cos b = 2 \cos \left\frac{a+b}{2} \right \ . \cos \left\frac{a-b}{2}\right$ $tg a + tg b = \left \frac{sen a+b}{\cos a \ . \cos b} \right$ 6. Subtração de senos - Subtração de cossenos - Subtração de tangentes $ sen a - sen b = 2 sen \left \frac{a-b}{2} \right \ . \cos \left \frac{a+b}{2} \right $ $ \cos a - \cos b = -2 sen \left \frac{a+b}{2} \right \ . sen \left \frac{a-b}{2} \right$ $tg a -tg b = \left \frac{sen a-b}{\cos a \ . \cos b} \right $ 7. Arco metade $sen \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1- \cos a}{2}}$ $\cos \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1+\cos a}{2}}$ $tg \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1- \cos a}{1+ \cos a}}$ 8. Arco duplo $sen2a = 2sena \ . \cos a$ $\cos 2a = \cos^{2} a - sen^{2}a$ $tg2a = \frac{2tga}{1-tg^{\style{font-familyArial; font-size31px;}{2}}a}$ 9. Arco triplo $sen3a = 3sena-4sen^{3}a$ $\cos 3a = 4 \cos^{3} 3a - 3 \cos a$ $tg 3a = \frac{3tg a-tg^{3}a}{1-3tg^{\style{font-familyArial; font-size30px;}2}a}$ 10. Arco quádruplo $sen4a =4sena \ . \cos a -8sen^{3} a \ . \cos a $ $\cos 4a = 8 \cos^{4} a - 8 \cos^{2} a +1$ $tg 4a = \frac{4tg a- 4tg^{3}a}{1-6tg^{\style{font-familyArial; font-size30px;}2}a+tg^{\style{font-familyArial; font-size30px;}4} a}$ 11. Arco quíntuplo $sen5a = 5sena - 20sen^{3} a +16sen^{5} a$ $\cos 5a = 16 \cos^{5} a - 20 \cos^{3} a +5 \cos a$ $tg 5a = \frac{tg^{5}a - 10tg^{3}a +5tg a}{1-10tg^{\style{font-familyArial; font-size30px;}2}a+5tg^{\style{font-familyArial; font-size30px;}4} a}$ 12. Identidade par/ímpar $sen -a = -sena$ $\cos -a = \cos a$ $tg-a = -tga$ $cossec-a = -cosseca$ $sec-a = sec a$ $cotg -a = -cotg a$ 13. Arcos complementares $sen 90° \hspace{ -a = \cos a$ $\cos 90° \hspace{ -a = sen a$ $tg 90° \hspace{ -a = cotg a$ $cotg 90° \hspace{ -a = tg a$ $sec 90° \hspace{ -a = cossec a$ $cossec 90° \hspace{ -a = sec a$ 14. Periodicidade $sen 360° \hspace{ +a = sen a$ $\cos 360° \hspace{ +a = \cos a$ $tg 180° \hspace{ +a = tga$ $cotg 180° \hspace{ +a = cotga$ $sec 360° \hspace{ +a = seca$ $cossec 360° \hspace{ +a = cosseca$ 15. Transformação de produto para soma $sen a \ . sen b = \frac { \cos a-b - \cosa+b}{2}$ $\cos a \ . \cos b = \frac {\cos a-b + \cos a+b}{2}$ $sen a \ . \cos b = \frac {sen a-b+sen a+b}{2}$ $tg a \ . tgb = \frac {tg a + tgb}{cotga + cotgb}$ $cotga \ . cotgb = \frac {cotga + cotgb}{tg a + tg b}$ $tga \ . cotgb = \frac {tg a + cotg b}{cotg a + tg b}$ 16. Potências de seno e cosseno $sen^{2} a = \frac{1-cos 2a}{2}$ $sen^{3} a = \frac{3sen a -sen3a}{4}$ $sen^{4} a = \frac{\cos 4a -4 \cos 2a + 3}{8}$ $sen^{5} a = \frac{10sen a -5 sen 3a + sen5a}{16}$ $sen^{6} a = \frac{10 - 15 \cos 2a +6 \cos 4a -cos 6a}{32}$ $\cos^{2} a = \frac{1+ \cos 2a}{2}$ $\cos^{3} a = \frac{3 \cos a +cos3a}{4}$ $\cos^{4} a = \frac{\cos 4a +4 \cos 2a + 3}{8}$ $\cos^{5} a = \frac{10 \cos a +5 sen 3a + \cos 5a}{16}$ $\cos^{6} a = \frac{10 + 15 \cos 2a +6 \cos 4a + cos 6a}{32}$
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the followingsin A − BGiven \[ \sin A = \frac{4}{5}\text{ and }\cos B = \frac{5}{13}\]We know that\[ \cos A = \sqrt{1 - \sin^2 A}\text{ and }\sin B = \sqrt{1 - \cos^2 B} ,\text{ where }0 < A , B < \frac{\pi}{2}\]\[ \Rightarrow \cos A = \sqrt{1 - \left \frac{4}{5} \right^2} \text{ and }\sin B = \sqrt{1 - \left \frac{5}{13} \right^2}\]\[ \Rightarrow \cos A = \sqrt{1 - \frac{16}{25}}\text{ and }\sin B = \sqrt{1 - \frac{25}{169}}\]\[ \Rightarrow \cos A = \sqrt{\frac{9}{25}}\text{ and }\sin B = \sqrt{\frac{144}{169}}\]\[ \Rightarrow \cos A = \frac{3}{5}\text{ and }\sin B = \frac{12}{13}\]Now,\[\sin\left A - B \right = \sin A \cos B - \cos A \sin B \]\[ = \frac{4}{5} \times \frac{5}{13} - \frac{3}{5} \times \frac{12}{13}\]\[ = \frac{20}{65} - \frac{36}{65}\]\[ = \frac{- 16}{65}\]
The correct option is D-1665Explanation for the correct 1 Find the value of cosA,sinBGiven that, sinA=45and cosB= know that, sin2θ+cos2θ=1cosA=1-sin2A=1-452=35Now the value of sinBis negative because B lies in 3rd quadrant. sinB=1-12132=1-144169=25169=-513Step 2 Find the value of cosA+BWe know that, cosA+B= option D is correct.
sin a 4 5 cos b 5 13